5,515 research outputs found

    Alignment procedure of the LHCb Vertex Detector

    Full text link
    LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. The silicon vertex locator (VELO) has a single hit precision of better than 10 micron and is used both off-line and in the trigger. These requirements place strict constraints on its alignment. Additional challenges for the alignment arise from the detector being retracted between each fill of the LHC and from its unique circular disc r/phi strip geometry. This paper describes the track based software alignment procedure developed for the VELO. The procedure is primarily based on a non-iterative method using a matrix inversion technique. The procedure is demonstrated with simulated events to be fast, robust and to achieve a suitable alignment precision.Comment: accepted for publication in NIM

    LHCb VELO software alignment, Part III: the alignment of the relative sensor positions

    Get PDF
    The LHCb Vertex Locator contains 42 silicon sensor modules. Each module has two silicon sensors. A method for determining the relative alignment of the silicon sensors within each module from data is presented. The software implementation details are discussed. Monte-Carlo simulation studies are described that demonstrate an alignment precision of 1.3 micron is obtained in the sensor plane

    LHCb VELO software alignment - PART II: the alignment of the VELO detector-halves

    Get PDF
    The software alignment of the Vertex Locator (VELO) is a critical component of the LHCb alignment strategy. This note demonstrates a potential algorithm to perform the alignment of the VELO detector-halves. The approach described in this document, and the tools developed, are also applicable to the alignment of the other LHCb sub-systems and the global relative alignment of the sub-detectors

    Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Get PDF
    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape

    Giant Anisotropic Magneto-Resistance in ferromagnetic atomic contacts

    Full text link
    Magneto-resistance is a physical effect of great fundamental and industrial interest since it is the basis for the magnetic field sensors used in computer read-heads and Magnetic Random Access Memories. As device dimensions are reduced, some important physical length scales for magnetism and electrical transport will soon be attained. Ultimately, there is a strong need to know if the physical phenomena responsible for magneto-resistance still hold at the atomic scale. Here, we show that the anisotropy of magneto-resistance is greatly enhanced in atomic size constrictions. We explain this physical effect by a change in the electronic density of states in the junction when the magnetization is rotated, as supported by our ab-initio calculations. This stems from the "spin-orbit coupling" mechanism linking the shape of the orbitals with the spin direction. This sensitively affects the conductance of atomic contacts which is determined by the overlap of the valence orbitals.Comment: latex AAMR.tex, 6 files, 5 figures, 4 pages (http://www-drecam.cea.fr/spec/articles/S06/011

    Photovoltaic response around a unique180° ferroelectric domain wall in single crystalline BiFeO3

    Get PDF
    Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO3 single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photo-electric properties. Using 3D modelling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion

    Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    Full text link
    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current model for magnetic tunnel junctions that extends the two-current Julliere model by adding an inelastic, spin-independent tunneling contribution. Our analysis gives strong evidence that the observed drastic decrease of the GB-TMR in manganites is caused by an imperfect tunneling barrier.Comment: to be published in Europhys. Lett., 8 pages, 4 figures (included

    Terahertz wave generation via optical rectification from multiferroic BiFeO3

    Full text link
    We detected broadband coherent terahertz (THz) emission from multiferroic BiFeO3 after illuminating a high-quality bulk single ferroelectric domain crystal with a ~100 fs optical pulse. The dependence of the emitted THz waveform on the energy and polarization of the optical pulse is consistent with the optical rectification mechanism of THz emission. The THz emission provides a sensitive probe of the electric polarization state of BiFeO3, enabling applications in ferroelectric memories and ferroelectric domain imaging. We also report room-temperature THz optical constants of BiFeO3.Comment: accepted for publication in Applied Physics Letter

    Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires

    Full text link
    Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.Comment: 23 pages, 8 figure
    corecore